

Decentralized grid control

Prof. Dr. Eberhard Waffenschmidt
May 2016
IRENEC 2016, Istanbul

Sometimes 85\% RE in the grid

Conventional generators will be missing

Generators replaced by electronics

Reaction to load step

Instantaneous reaction: Virtual inertia with power

Primary control: inverters

Virtual intertia with power converters

Required Energy

Topology for virtual inertia

Needed capacitor size

Relative voltage difference $\Delta \mathrm{U} / \mathrm{Umax}$

Power variation

Variation of intermediate voltage

Virtual inertia with power converters

Use intermediate voltage capacitor:

- Typical size is sufficient
- Low additional power (~+/-0.1\%)
- No re-dimensionig necessary
- Low voltage ripple (~+/-5\%)
- No degradation of elcap

Primary control with batteries

Occurrence of Primary Control Power in 2013

State of charge without measures

Degrees of freedom with Primary Control

Additional degrees of freedom:

- Delayed reaction: 30s to full power
- Preciseness of frequency measurement: 10 mHz
- Trading of energy

Effect of applying degrees of freedom

Preciseness of frequency measurement

- Problem:

Systematic error of frequency measurement

- Example:
+/-1 mHz -> +/-40 MWh per year
- Solution:

Correction with running average

- Justification:

Deviation from 50.000 Hz compensated by power providers (synchronous time correction)

Application of running average

Primary control with batteries

- Problem:

Strong depletion due to

- Charging losses
- Imprecise frequency measurements
- Solution:

Use degrees of freedom

- Excess delivery
- Deadtime
- Frequency: Averaging
- If anything fails: Energy trading

Conclusion

Conclusion

Grid power control with decentralized sources:

- Virtual inertia:

Use intermediate voltage capacitors of power converters

- Primary control: Use degrees of freedom for batteries

Contact

Prof. Dr. Eberhard Waffenschmidt

Electrical Grids, CIRE - Cologne Institute for Renewable Energy Betzdorferstraße 2, Room ZO 9-19 50679 Cologne, Germany
Tel. +49 22182752020

eberhard.waffenschmidt@th-koeln.de https://www.fh-koeln.de/personen/eberhard.waffenschmidt/

Appendix

Size of electrolytic capacitors

Voltage varitions during daily operation

Definition of
$\begin{aligned} & \text { Definition of } \\ & \text { time constant Ta: }\end{aligned} \quad \frac{\Delta P}{P_{0}}=T_{a} \cdot \frac{d}{d t} \frac{\Delta f}{f}$
Power into
the capacitor:

$$
\Delta P=\Delta I \cdot U_{0}
$$

Dependence of voltage and current: $\Delta U_{c}(t)=\frac{1}{C} \cdot \int \Delta I(t) d t$
$\Delta_{P}=$ Power step
$P_{0}=$ Power in the grid
$\Delta f=$ Frequency variatrion
$f=$ Grid frequency
$C=$ Capacity of the capacitor
$I=$ Current into the capacitor
$U_{0}=$ Intermediate voltage
$\Delta U_{c}=$ Voltage variation at capacitor
Intermediate solution:

$$
\Delta U_{c}(t)=\frac{1}{C} \cdot \int \frac{P_{0} T_{a}}{U_{0}} \cdot \frac{d}{d t} \frac{\Delta f}{f_{0}} d t
$$

Max. energy content of capacitor:

$$
E_{0}=\frac{1}{2} \cdot C \cdot U_{0}^{2}
$$

Solution:

$$
\frac{\Delta U_{c}(t)}{U_{0}}=T_{a} \cdot \frac{1}{2} \cdot \frac{P_{0}}{E_{0}} \cdot \frac{\Delta f}{f}
$$

Voltage variation at the capacitor is proportional to the frequency variation

