

Supervisory Control of Microgrids in Grid-Connected and Islanding Mode – Investigations Using a Real-Time Digital Simulation Platform

Marcello Schifani, Eberhard Waffenschmidt, Reza Iravani

IESC 2017, Farmingdale, NY, 19.-20.Oct. 2017

Future power grid

Whole Europa is hit by a Blackout.

Whole Europa? Nope! One smart village is able to fight the darkness...

And there will be more!

Criterias for the control structure

- Recognition of faults to initialize the islanding process
- Recognition of recovery to initialize the reconnection process
- Short detection time.
- Transients to be minimized.
- Quickly each steady-state
 - In Islanded Mode, frequency and voltage is kept constant.

Benchmark grid

Superisory control

Islanding

- Detection
- Command for circuit breaker
- Command to local control
- Reconnection
 - Detection
 - Synchronisation
- Coordination of local controllers
 - Selection of master device

Local control

- Grid connected mode:
 - Real and reactive power (PQ) to grid is controlled
 - by current mode control
- Islanding mode (only "master" device):
 - Voltage and frequency (VF) is controlled
 - By voltage mode control

Simulation setup

Simulation types

- Offline simulation
 - Full setup
 - More time consuming
- Real-time simulation
 - Reduced setup: One DER4 and one load L7
 - More realistic:
 - Can be linked to hardware

Schematic of the current controlled VSC

Islanding detection and

grid reconnection control

Simulation scenarios

Scenario1: Intentional Islanding

Offline Simulation

Real-Time Simulation

Technology Arts Sciences TH Köln

Scenario 1: Intentional islanding

Real-Time Simulation

Scenario 2: 3-phase short to ground

Offline Simulation

Scenario 3: 1-phase short to ground

Real-Time Simulation

Summary

Control for islanding and re-connect of microgrid:

To do

- Converter control
- Supervisory control
 - Detection for islanding
 - Re-connection
 - Power control

Contacts

Marcello Schifani, MSc

Alumni Student Cologne University of Applied Sciences Cologne, Germany, marcello.schifani@mail.utoronto.ca

Prof. Dr. Eberhard Waffenschmidt

CIRE - Cologne Institute for Renewable Energy Cologne University of Applied Sciences Betzdorferstraße 2, 50679 Köln, eberhard.waffenschmidt@th-koeln.de https://www.th-koeln.de/personen/eberhard.waffenschmidt/

Prof. Reza Iravani

Department of Electrical and Computer Engineering University of Toronto 10 King's College Road, Toronto, Ontario, Canada M5S 3G4 iravani@ecf.utoronto.ca http://www.ele.utoronto.ca/prof/iravani/iravanimain.html

