SolAhrtal energy concept for the village of Kreuzberg

Fundamentals

Kreuzberg 53505 Altenahr 200 buildings severely damaged by flooding

210 buildings

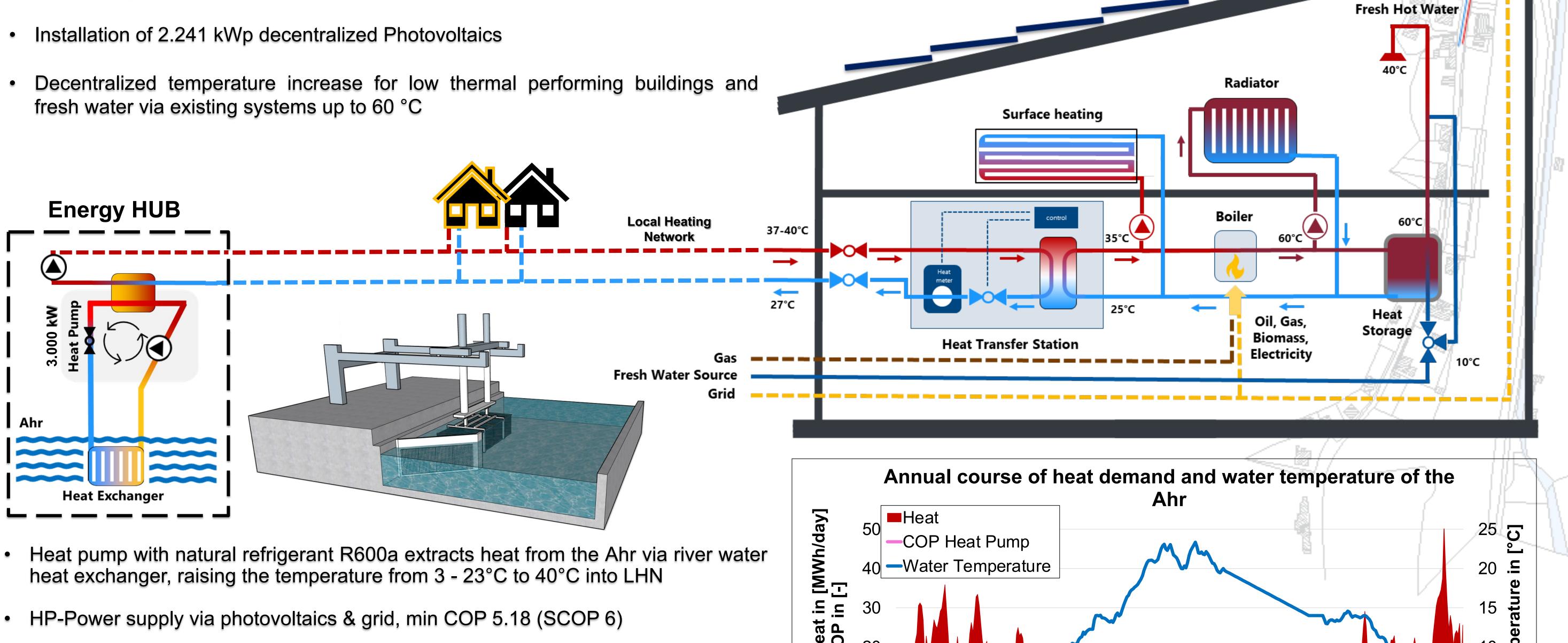
Heat concept required by 2028

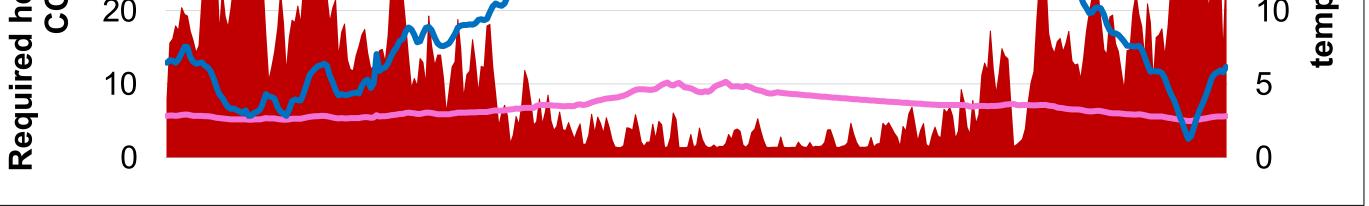
Approx. 650 inhabitants

Objectives

- Achieving a sustainable energy supply that is protected from significant price volatility
- Financial benefits for Kreuzberg residents through energy transition
- Enabling local heat planning through preliminary preparations

Measures


- Conducting a residential survey to evaluate building performance- and usage pattern
- Analyze possible energy potentials & grid limitations
 - Implementation of a local heating network & adaptation of existing systems to reduce energy costs
- Installation of roof PV-systems by an established citizens' energy cooperative


Connecting 141 buildings to a local heating network

Photovoltaic

- Parallel connection of smaller 1 MW heat pumps to take advantage of economies of scale and increasing security if supply
- Concrete gutter to ensure the water depth of at least 2 m as well as a crane system for maintenance

Costs	Finance	Side Effects of Measures
Total Investment costs [€] Photovoltaic system 3.361.950 € Large-scale heat pump	 Total Cost LHN 4.254.640 € (Invest after Subsidies 2.200.284 €) Public Sector 1.706.784 € Cost of Capital per Year 151.335 € 	 Enables the cost-effective installation of PV systems by the energy cooperative and thus a lucrative source of income
	 Private Sector 493.000 € (3.5 k€/household) 	 Creating incentives for e-mobility through PV Systems and thus a reduction in CO₂ in the mobility sector
7.616.590 € Heat exchanger (crane und sew work) 120.000	- Amortisation after 8,2 Years	 Enables cost-effective heat supply for years and therefore provides security
Local heating network house connection and transfer station 705.000 € Local heating network (incl. Construktion of Energy Hub) 1.518.640 €	- Energy Price per kWh 6 2 Cents	 The System adapts to existing buildings and will become more efficient in the renovation process, resulting in lower system temperatures

Conclusion

Despite limited potential for renewable energies and financial resources at the project location, an energy concept was developed that uses a 3 MW heat pump system that harnesses energy from the Ahr river and a local heating network to significantly reduce greenhouse gas emissions at a cost of $\in 0.062/kWh + \in 100/month$ Base price. 141 households will be connected and the concept allows those requiring higher temperatures to integrate existing boilers to preserve post-flood investment. It is financed and operated by an energy co-operative, which creates economic and democratic participation for the local population. Harnessing the PV potential on rooftops exceeds the net-zero emissions target for connected households.

Research Project: "SolAhrtal"

Master project Philipp Steffens Nicolas Milan Stark Marvin Joshua Wickenhäuser Technology Arts Sciences TH Köln