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Abstract
This  paper  presents  a  power  quality  monitor  placement  method  that  balances  observability  with  minimal
measurement  devices.  The approach  constructs  an affinity  matrix capturing how transients,  harmonics,  and
voltage sags propagate through the network. By aggregating voltage and current data under varying thresholds, a
scree-plot  analysis  using singular  value decomposition identifies  the optimal  number of monitors.  Tests  on
multiple  grids  demonstrate  that  only  a  few  power  quality  monitors  can  capture  the  dominant  variance.
Experimental results confirm improved harmonic state estimation when voltage monitors are placed at nodes far
from strong voltage sources and on less supported feeders and the opposite for current monitors. This method
considers various disturbance types, downstream tasks and scales more efficiently than existing methods.

1 Introduction
Monitoring  of  power  quality  in  distribution grids  is
gaining  importance  with  the  increase  of  distributed
inverter-based  generation  and  significant  non-linear
loads.  Power  quality  disturbances  can  lead  to
premature aging of components and equipment failure.
These  events  often  go  unnoticed  by  distribution
system  operators  (DSOs)  due  to  insufficient  power
quality (PQ) monitoring.
Placing power quality monitors (PQM) in low-voltage
grids  faces  multiple  constraints.  Many grid  sections
are  underground,  limiting  where  PQM  can  be
installed. Diverse energy production and consumption
patterns  exacerbate  the  challenge.  Furthermore,
disturbances affect  not only their node of origin but
also spread  throughout  adjacent  grid  sections.  Real-
time data retrieval and synchronization are crucial for
DSOs to correctly assess grid conditions.

1.1 Literature Review
Numerous  studies  have  addressed  the  problem  of
optimally  placing  measurement  devices  in  power
systems. Only few address power quality disturbances
in  distribution  networks  and  even  fewer  consider
adaptability to downstream tasks as objective.
The authors of  [1] define a monitor reach area as the
region where at least  one monitor detects a fault.  A
binary  coverage  matrix  is  constructed  using
measurement and error nodes, where entries indicate if
the residual fundamental voltage at a node falls below
a threshold. The approach is limited to voltage sags
from  short  circuits  and  is  formulated  as  an
optimization  problem.  A  topological  graph  theory
approach achieving full observability is presented in

[2]. The authors build a spanning measurement tree of
full  rank  placing  a  total  of  18  phasor  measurement
units in the IEEE 57-bus grid. Other methods focus on
placing  measurements  in  a  way  that  optimizes  the
results  of  a  state  estimation.   In  [3] a  cost-benefit
analysis is combined with a power flow estimation to
reduce  the  overall  costs,  selecting  10  measurement
locations in a 99-node grid. The authors of [4] and [5]
use a genetic algorithm as a metaheuristic approach to
approximate the optimal locations verified through a
weighted least squares state estimation (SE). In  [6] a
seeker optimization is combined with a harmonic state
estimation (HSE) to find the optimal PQM placement
in the IEEE 14-bus grid with 4 fixed harmonic sources
achieving full observability with 7 PQM.
Overall,  the  optimization  functions  are
computationally expensive and algorithms that aim at
achieving  full  observability  require  significant
amounts of PQM. Thus, data-based methods are on the
rise that find good approximations of the system state
even  with  few  PQM[7],  [8],  [9].  Furthermore,  with
few exceptions ([6], [10]) most algorithms focus either
only on power flow or consider only voltage sags as
PQ disturbance.
2 Methodology
A  use-case–oriented  algorithm  is  proposed  for
selecting measurement locations in power distribution
grids.  Full  observability  through  conventional  SE
requires a large number of measurement devices, but
simpler cases like fault detection or SE using machine
learning algorithms may only require small residuals
to be captured. The algorithm must therefore adapt to
diverse requirements while scaling efficiently to larger
networks.
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2.1 Simulating Power Quality Disturbances
In total, three grids were selected as test scenarios for
the placement algorithm:

A) CIGRE low voltage distribution grid [11]
B) 14 node laboratory microgrid
C) IEEE 33-bus medium voltage (MV) grid [12]

Each of those grids was modelled in OpenDSS.
Then,  two  types  of  disturbances  were  simulated:  a
transient and a voltage sag. Each node in each of the
grids  was  subjected  to  each  fault  once  with  PQM
located at all nodes capturing the residuals of the fault.

2.2 Affinity Matrix
An affinity matrix (AM) was constructed to quantify
how strongly a disturbance at node  d is “seen” by a
measurement  device  at  node  m.  For  a  single
frequency, the affinity entry AM d ,m  is defined as:

AM d , m=|(vm , i−vm , e)|/|(vd , i−vd ,e )|
where

• vm , i is  the  measured  voltage  phasor  at
node m during the disturbance

• vm , e  is  the  measured  voltage  phasor  at
node m in the pre-disturbance condition

• vd ,i , v d ,e are the analogous voltages at the
disturbance node d.

The  ratio  AM d ,m  lies  within  [0,1],  where  0
indicates that the disturbance at d has no effect on m,
and  1  indicates  that  node  m experiences  the  same
relative  voltage  deviation.  For  current-based
measurements,  an  analogous  definition  is  used  with
current phasors. This formulation is then extended to
multiple  frequencies  f by  stacking  additional  AM
layers or dimensions.
2.2.1  Aggregation:  Using  this  affinity  matrix,  it  is
possible  to  analyse  the  spread  of  a  PQ disturbance
from one node to another. However, an algorithm that
finds  the  optimal  measurement  location  across
multiple types of disturbances and for each frequency
needs to consider all at once. Therefore, the different
types of disturbances were aggregated as follows: If a
frequency component appears in only one disturbance
type, the original  value is  used. When two or  more
disturbances share the same frequency, the values of

the AM are equal since the impedance that influences
the  error  spread  is  equal.  When  merging  frequency
components, the mean across all frequency channels is
calculated  to  produce  a  single  aggregated  matrix.
Other  strategies,  such  as  minimum  or  weighted
averaging, can be adopted in worst-case-scenariors or
if certain harmonics are more critical for the use case.
Additionally,  two  monitoring  scenarios  are
considered:  Voltage-only  measurements  (I.)  and
combined voltage and current measurements (II.)
For  the  combined  approach,  a  max  aggregation  is
proposed: AM d ,m

combined=max ( AMd ,m
voltage , AM d , m

current)
This  choice  ensures  that  if  either  current  or  voltage
reveals  a  given  disturbance  more  strongly,  the
aggregated AM captures that information. Depending
on the use case, this strategy can be adapted to mean
aggregation  or  to  include  weights  e.g.  in  case
monitoring of voltage characteristics is required due to
sensitive equipment.
 2.2.2 Thresholds:  Two thresholds modulate how the
AM values translate to recognizing disturbances:

• Minimum Threshold  min_threshold. All AM
values below this  threshold are  set  to  zero.
This filters out minor deviations and noise.

• Maximum Threshold max_threshold. All AM
values  above  this  threshold  are  set  to  one.
This identifies situations where a disturbance
is  “sufficiently  recognized”  for  the  given
application.

These thresholds enable tuning for different use cases
and  for  desired  accuracy  of  downstream  tasks  like
state estimation.
2.2.3  Asymmetry:  Because  the  Thevenin-equivalent
impedance  Z th  seen  by  each  disturbance  node
differs  significantly,  the  matrix  is  generally  not
symmetric. This asymmetry reflects the reality that a
strong source will drive a higher short-circuit current
toward the fault location. Since AM d , m≠AM m ,d  in
general,  the  matrix  can  be  interpreted  as  a  directed
graph in graph-theoretical terms. Classical approaches
that assume symmetric relationships (e.g., covariance-
based  methods)  are  not  directly  applicable.   Thus,
standard  methods  like  principal  component  analysis
(PCA), which require symmetric input matrices, may
be unsuitable without modification.

2.3 Main Algorithm
A  brute-force  approach  would  evaluate  all  possible
combinations  of  measurement  nodes  for  a  given
number of devices. This is computationally intensive –
particularly for larger networks – because the number
of  node  subsets  grows  exponentially.  Instead,  the
proposed  method  leverages  spectral  analysis
techniques:
1. Compute  the  aggregated  AM:  Combine  results

across  different  disturbances  and  frequencies  as
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Figure 1: Microgrid with 6 controllable inverters 
(node 9-14) causing significant harmonic distortions.
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described and as deemed useful for the specific use
case, applying min-max thresholds if desired.

2. Perform  Eigenvalue  or  Singular  Value
Decomposition  (EVD  /  SVD):  On  the  row-
normalized  AM,  EVD  is  performed  to  find  the
eigenvalues  and  eigenvectors.  This  step  is
explained in more detail below.

3. Determine Clusters and significant nodes: Low
or  zero-valued  eigenvalues  often  point  to
redundant  measurement  information,  whereas
large  singular  values  correspond  to  dominant
disturbance patterns. Techniques such as k-means
clustering can identify nodes with similar affinity
profiles.

4. Select  Monitor  Nodes:  For each  cluster,  choose
one  node  that  exhibits  maximal  coverage  (i.e.,
highest  aggregated  AM)  to  ensure  that
disturbances are adequately observed.

The  directed  spectral  clustering  approach  starts  by
forming a row-stochastic transition matrix P from the
non-negative affinity matrix AM so that each row of P
sums to 1:

P i , j=AM d , m /(∑
j

of AM d ,m)

To  find  the  left  eigenvectors  of  P,  the  right
eigenvectors  of  the  tranposed  matrix  PT  are
computed PT v=λ v with v as the eigenvector and λ
as the corresponding eigenvalue.
The eigenvalues λ are then sorted in descending order
based  on  their  real  part.  Note  that  at  this  step  the
eigenvalues may be complex numbers since the matrix
is asymmetric.
Then,  the  eigenvectors  corresponding  to  the  top  n
components are selected where n is a parameter of the
algorithm. In the process  n=2  was found to be a
good value to receive meaningful clusters. [13] Those
top n eigenvectors form an embedding matrix E which
is  then  normalized  and  clustered  via  k-means.This
procedure  identifies  k groups  of  nodes  that  exhibit
similar  “directional”  relationships  in  the  directed
graph  defined  by  the  affinity  matrix. The
computational complexity for typical implementations
of SVD or EVD on an n×n matrix is on the order of

O (n3) ,  significantly smaller than the runtime for
combinatorial  optimization  O (2n) for grids larger
than n=10 nodes.

2.4 Restrictions and further applications
The algorithm assumes that each PQ meter provides
time-synchronized  measurements  (e.g.,  via  GPS).  A
similar  procedure  can  be  adapted  for  power-flow–
related metrics. Instead of quantifying how strongly a
fault  at  node  d manifests  at  node m,  the AM could
represent  the  impact  of  a  power  injection  on  local
voltage drops.
Gaussian measurement noise is handled by setting the
min_threshold higher  than  the  expected  standard
deviation.  More  complex,  systematic  sensor  errors

may  require  additional  steps  or  extra  monitor
installations for redundancy.
Since  the  Thevenin-equivalent  impedance  is  highly
dependent on the source characteristic, the algorithm
relies on an accurate description of the grid. Moreover,
Thevinin  impedance  of  solar  systems  changes  with
level  of  irridation.  With  the  increase  of  distributed
generation  the upstream grid section may no longer
exhibit the lowest equivalent impedance.

3 Results
3.1 Finding the optimal amount of measurements
First, the required amount of measurement devices is
estimated.  For  this,  we  calculate  the  explained
variance ratio  evr of the 10 most significant singular

values  based  on  the  formula  evr i=σ i
2(∑

k =1

r

σ k
2)

−1

with r as the rank of the data matrix and σ i as the i-
th singular value of the centered data matrix. Here, the
denominator  represents  the  total  variance  present  in
the data after centering. The procedure is repeated for
selected sets of min-max thresholds and plotted for the
voltage and current AM individually in a scree plot in
figure 2.

Typically,  selecting  the  number  of  components
corresponding to the "knee" of the scree plot curve is a
reasonable choice. For voltage monitoring, using 3 to
4 measurement devices provides a balanced solution.
However,  with  a  high  minimum  threshold  of  0.5,
additional  measurement  devices  are  required.  This
approach  may  be  particularly  advantageous  for  use
cases that demand the capture of significant residuals
or in grids where measurement devices are expected to
have high noise levels.
Since most PQM are capable of measuring voltage and
current,  we  combine  the  affinity  matrices  through
mean aggregation and show the scree plot in figure 3.
The scree plot illustrates how the choice of thresholds
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Figure 2: Scree plot of the explained variance ratio 
found through singular value decomposition of the 
affinity matrix. The y-axis shows the proportion of 
variance explained by the respective component (i.e. 
measurement device, on x-axis)
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affects  the proportion of variance explained by each
component. A lower max threshold leads to the first
component  capturing  a  larger  share  of  the  total
variance,  reflecting  the  idea  that  errors  are  more
broadly captured by the leading component.

In contrast, a higher min threshold results in a flatter
curve,  as  the  variance  becomes  more  evenly
distributed across components. In this case, the largest
eigenvalues  no  longer  effectively  capture  specific
errors,  as  the  stricter  threshold  filters  out  smaller
contributions,  requiring  additional  components  to
represent the variance adequately.

3.2 CIGRE low voltage grid

For the CIGRE low voltage distribution grid, optimal
placement of 4 voltage-only measurement  devices is
determined by first clustering the grid into 4 sections
and then selecting optimal PQM locations within each
cluster. As shown in figure 4, three devices are placed
in the LV section at the end of long feeders away from
the upstream grid, and one PQM in the MV section.

Here, the transparency of each circle around the node
shows the aggregated percentage of the total residual
arriving  at  the  respectively  colored  measurement
location.  Fully  transparent  circles  show  that  no
residual  remains  while  opaque  circles  signify  a
majority of residual was captured by the measurement
device.

When  combining  current  and  voltage  through mean
aggregation,  the  measurement  devices  are  placed  in
central locations of the feeders as shown in figure 5. 

3.3 Microgrid
For the microgrid, two voltage-monitoring PQM were
selected  based  on  the  evr  calculation  and  placed  at
nodes 11 and 14.
To validate the  placement  further,  two HSE models
were  employed to  estimate  the  state  of  the  first  25
harmonic voltages. The HSE concept is based on the
work  in  [9].  Both  models  utilized  fully  connected
neural networks, with harmonic voltages measured at
two  PQMs  as  inputs  and  harmonic  voltages  at  all
nodes  as  outputs.  Verification  was  performed  using
real data collected by PQMs installed at 10 out of the
14 nodes,  and  the  results  are  presented  below.  The
neural networks were trained with two hidden layers,
each containing 750 neurons,  over 1000 epochs.  No
additional hyperparameter tuning was performed.
With monitors placed optimally at nodes 11 and 14,
the Mean Absolute Error (MAE) is 0.0215, which is
lower  than  the  MAE  of  0.0246  observed  under
suboptimal placement  at  nodes 6 and 9. This shows
that with optimal PQM placement,  the HSE is more
accurate than with suboptimal placement.
For  the  combination  of  voltage  and  current
monitoring,  two  PQM  were  selected  and  placed  at
central junctions (node 3 and 4).
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Figure 3: Scree plot for combined current and voltage
measurements for different thresholds.

Figure 4: Optimal placement of 4 PQM (colored 
squares) considering voltages for various frequencies.
Opacity of circles shows percentage of error captured 
by the respectively colored measurement node.

Figure 5: Optimal placement of 4 PQM considering 
voltages and currents aggregated through mean 
values. Measurements are placed at central junctions 
and in the industrial section at the distanced node.
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3.4 IEEE 33-bus

When  monitoring  only  the  voltage,  3  PQM  were
placed at nodes 17, 26 and 32 in the IEEE 33-bus grid
as shown in figure 6.  Through mean aggregation of
voltage and current the locations 3, 18 and 25 were
identified as optimal.
4 Conclusion
A  data-driven  monitor-placement  algorithm  was
introduced,   using an affinity matrix to capture how
various  PQ  disturbances  propagate  through
distribution  grids.  By  thresholding  and  aggregating
voltage/current  measurements,  the  method  applies
spectral  decomposition  to  estimate  the  required
number  of  PQ  monitors  without  relying  on
combinatorial  searches  or  iterative  optimization,
enabling efficient scalability to larger networks.
For  practical  deployment,  the  method  yields  clear
recommendations: voltage monitors should be placed
away  from  strong  sources  to  maximize  disturbance
visibility. Current-measuring PQMs are most effective
when placed at feeder origins while combined voltage
and current  sensors  are  best  located  at  key  network
junctions.  These  recommendations  for  DSOs  are
generalizable  to  different  grid  topologies,  if
approximate grid information is available.
Validation through HSE based on neural networks on
multiple  test  networks  confirmed  that  the  selected
monitor locations yield improved accuracy compared
to suboptimal placements.  The algorithm’s moderate
runtime  and  capacity  to  handle  both  voltage  and
current  measurements  make it  readily applicable  for
real-world  applications.  Overall,  this  methodology
enables  DSOs  to  deploy  fewer  PQ  monitors  while
capturing  a  broad  spectrum  of  disturbances,  thus
optimizing both installation cost and observability.
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Figure 6: In the IEEE 33-bus grid, errors propagate 
more significantly and residuals are captured well 
even at distanced nodes.
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